

Simulation framework

- Based on PHENIX software framework, a.k.a. Fun4All
 - Naturally supports pause analysis at any reconstruction stage (e.g. simulation/reconstruction/analysis or any sub steps), store intermediate data to file (a.k.a. DST file or PHENIX formatted ROOT file), and resume in another Fun4All reconstruction cycle
 - Naturally supports embedding, e.g. single particle in to A+A or Pythia8 p+p jet into A+A
 - Naturally supports event filtering, e.g. trigger on generator (e.g. <u>PHPy8JetTrigger</u>) or recolevel (easy to write when needed)
 - Event mixing via analysis code
 - During event processing, reco data available in memory (<u>PHCompositeNode</u>) for user to write a module to analyze on-the-fly or choose to save relevant parts to user-defined NTuple
- Constructs detector in Geant4 via C++. No automated interface to engineering drawing. Expert built and maintained.
- Calls Geant4 track input primary particles, Record digested Geant4 hits
- Truth ancestry tracing tool throughout analysis chain
- Common macro run the simulation and standard analysis chain
- Maintainer: Chris Pinkenburg, Mike McCumber, Jin Huang

Event generator

- Reads all HEPMC format:
 - <u>Fun4AllHepMCInputManager</u> -> <u>HepMCNodeReader</u>
- Generator
 - Pythia8 for p+p: PHPythia8
 - Hijing for p+A, A+A
 - option for after-burner of flow: <u>flowAfterburner</u>
 - Some home-brewed format of EIC Pythia6 input: <u>ReadEICFiles</u>
 - Some support on YaJEM and JEWEL (Dave?)

Fast simulation

Available:

- In core-software: event generator-based fast jet reconstruction via FastJet
- In user analysis code: fast tracking/PID performance smearing
- On-going
 - Fast calorimeter simulation in core-software

Tracking in Geant4

- Ready:
 - Cylinder shaped silicon tracker available
 - TPC + afterburner digitization
 - Ganging readout strips
 - Non-perfect channel aliveness
- Standard design options in standard macro: <u>https://github.com/sPHENIX-</u> Collaboration/macros/tree/master/macros/g4simulations
 - 1. Default: PHENIX VTX + RIKEN new strip layers in MIE: G4 Svtx.C
 - 2. PHENIX VTX + new TPC: <u>G4 Svtx pixels+tpc.C</u>
 - 3. Maps inner pixel + RIKEN new strip layers: <u>G4 Svtx maps+strips.C</u>
 - 4. Maps inner pixel + TPC: <u>G4 Svtx maps+tpc.C</u>
 - 5. Full Maps (variation of ITS): G4 Svtx ITS.C
- In development
 - Ladder based silicon tracker geometry
- Maintainer: Mike McCumber, Tony Frawley, Alan Dion (leaving)

Tracking reconstruction

Ready

- Hough transform based helical pattern reco based on cylinder tracker
- Some fake rejection
- Home-brewd Kalman filter based on cylinder tracker

Next step:

- Generic Kalman filter
- Handle ladder in silicon tracker options
- Better handle of fake rejection
- Maintainer: Mike McCumber, Tony Frawley, Alan Dion (leaving)

Calorimetry in Geant4

Ready

- Detailed EM calorimeter sim based on UCLA SPACAL prototype and current sPHENIX engineering design of enclusure
- Detailed Hadron calorimeter based current sPHENIX engineering design
- Tower scheme with geometry description
- Next step:
 - Details: light collection, variation, hadron interaction model
 - Calibration
- Maintainer: Chris Pinkenburg, Jin Huang

Calorimetry reconstruction

Clusterizer

- Ready: a toy graph Clusterizer that connect all neighboring non-zero suppressed towers
- Questionable support: PHENIX Clusterizer code
- Missing: realistic Clusterizer that support non-spherical shower
- Track calorimeter association
 - Track projection based Clusterizer
 - Likelihood macro tool for electron ID. Need to formulate a compiled module
- Maintainer: Mike McCumber, Jin Huang

Jet tools

- Baseline jet reco (<u>JetReco</u>)
 - Input: truth, track, tower, cluster
 - Algorithm: FastJet, AntikT, etc.
 - Output: Jet with truth association
- Exploratory:
 - CMS style flow jet: <u>PHFlowJetMaker</u>
- Need
 - Background subtraction (coded in PHENIX software, need to be migrate over to sPHENIX and improve code standard)
 - Fake rejection, some quick form in PHENIX code base. Need to improve/port over to sPHENIX
 - B-jet tagging (only in form of fast truth sim, not in reco)
- Maintainer: Mike McCumber, Jin Huang

Simulation production

- Standard set with full detector Geant4 information stored
 - 1000 particle per setting
 - X 4 eta bin
 - X 10 momentum bins
 - X 9 particle species
 - Reproducible in 1 day
- Standard Hijing set with full detector information stored
 - 1000 event per setting
 - b = 0-4fm, b ~ 8fm
 - Reproducible in 1 day
- On demand production sets
 - 100k single particle per setting for resolution tail study
 - Tracking only Hijing->G4 simulation with 10k(?) level event
 - Rare event -> Hijing embedding in full detector by reusing the same 1000 Hijing full detector simulation
- Computing facility:
 - RACF @ BNL: 10k CPU for single particle simulation, 2k CPU for Hijing related simulation, 200 TB(?) disk
 - Possible future for OpenScienceGrid
- Time cost:
 - Geant4: ~1s / single particle, ~15min / Hijing event
 - Reconstruction: ~1s / embedded Au+Au event
- Maintainer: Chris Pinkenburg

MISC

- What is the mode of interaction between physics/analysis, simulation and detector specialists?
 - Most via Tue software meeting and private meetings
- Need some documentation site.
 - Right now via sPHENIX wiki: https://wiki.bnl.gov/sPHENIX/index.php/Software
 - Options for Twiki?

